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Abstract

We present a comparative evaluation of a large number
of anomaly detection techniques on a variety of publicly
available as well as artificially generated data sets. Many of
these are existing techniques while some are slight variants
and/or adaptations of traditional anomaly detection tech-
niques to sequence data. The specific contributions of this
paper are as follows: (i). This evaluation facilitates under-
standing of the relative strengths and weaknesses of differ-
ent techniques. Through careful experimentation, we illus-
trate that the performance of different techniques is depen-
dent on the nature of sequences, and the nature of anoma-
lies in the sequences. No one technique outperforms all oth-
ers. For most techniques we also identify some data sets on
which they perform very well, and some on which they per-
form poorly. (ii). We investigate variants that have not been
tried before. For example, we evaluate ak nearest neigh-
bor based technique that performs better than a clustering
based technique that was proposed for sequences. Also, we
propose FSA-z, a variant of an existing Finite State Automa-
ton (FSA) based technique, which performs consistently su-
perior to the original FSA based technique. (iii). We pro-
pose a novel way of generating artificial sequence data sets
to evaluate anomaly detection techniques. (iv). We charac-
terize the nature of normal and anomalous test sequences,
and associate the performance of each technique to one or
more of such characteristics.

1 Introduction

Sequence data is found in a wide variety of application
domains such as intrusion detection, bio-informatics, etc.
Hence anomaly detection for sequence data is an important
topic of research. There is extensive work on anomaly de-
tection techniques [1, 11, 14], but most of these techniques
look for individual objects that are different from normal
objects. These techniques do not take the sequence aspect
of the data into consideration. For example, consider the set
of user command sequences shown in Table 1. Clearly the
sequenceS5 is anomalous, even though each command in
the sequence by itself is normal.

Several anomaly detection techniques for symbolic se-
quences have been proposed in diverse application domains
such as intrusion detection, proteomics, and aircraft safety

S1 login, pwd, mail, ssh, . . . , mail, web, logout

S2 login, pwd, mail, web, . . . , web, web, web, logout

S3 login, pwd, mail, ssh, . . . , mail, web, web, logout

S4 login, pwd, web, mail, ssh, . . . , web,mail, logout

S5 login,pwd, login,pwd, login,pwd, . . . , logout

Table 1: Sequences of User Commands

Kernel
Based

Window
Based

Markovian Techniques

Application Domains Techniques Techniques Fixed Variable Sparse
Intrusion Detection [7],[12],

[8],[10]
[8],[9],
[20],[16],
[15],[19]

[8], [6]

Proteomics [24]
Flight Safety [4] [23]

Table 2: Anomaly Detection Techniques for Symbolic Se-
quences.

as shown in Table 2. We group such techniques into fol-
lowing three categories:kernel based, window based, and
Markovian techniques. Kernel based techniques use a sim-
ilarity measure to compute similarity between sequences.
For example, a clustering based technique that usesnor-
malized longest common subsequenceas the similarity mea-
sure [4], has been proposed in aircraft safety domain. Win-
dow based techniques, e.g., STIDE [12], extract fixed length
windows from a sequence and assign an anomaly score to
each window. Markovian techniques assign a probabilis-
tic anomaly score to each event conditioned on its history,
using sequence modeling techniques. Examples of such
techniques areFinite State Automata(FSA) [19], Hidden
Markov Models(HMM) [20], andProbabilistic Suffix Trees
(PST) [24].

As is evident from Table 2, most of the existing tech-
niques for sequence anomaly detection have been tried in
only one domain with no comparative evaluation. We are
aware of only one work [8] that compared four techniques
(namely, STIDE, t-STIDE, which is a variant of STIDE,
HMM based, and RIPPER based) on 6 different data sets,
all of which were from system call intrusion detection do-
main.
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1.1 Our Contributions
We present a comparative evaluation of a large number

of anomaly detection techniques on a variety of publicly
available as well as artificially generated data sets. Many of
these are existing techniques while some are slight variants
and/or adaptations of traditional anomaly detection tech-
niques to sequence data. The specific contributions of this
paper are as follows:

• This evaluation facilitates understanding of the rela-
tive strengths and weaknesses of different techniques.
Through careful experimentation, we illustrate that the
performance of different techniques is dependent on
the nature of sequences, and the nature of anomalies in
the sequences. No one technique outperforms all oth-
ers. For most techniques we also identify some data
sets on which they perform very well, and some on
which they perform poorly.

• We investigate variants that have not been tried before.
Under kernel based techniques, we evaluate ak near-
est neighbor based technique that performs better than
a clustering based technique that was proposed for se-
quences [4]. Under Markovian techniques, we propose
FSA-z, a variant of an existingFinite State Automaton
(FSA) based technique, which performs consistently
superior to the original FSA based technique [19].

• We propose a novel way of generating artificial se-
quence data sets to evaluate anomaly detection tech-
niques.

• We characterize the nature of normal and anomalous
test sequences, and associate the performance of each
technique to one or more of such characteristics.

2 Problem Statement
The objective of the techniques evaluated in this paper

can be stated as follows:

Definition 1 Given a set ofn training sequences,S, and a
set ofm test sequencesST, find the anomaly scoreA(Sq)
for each test sequenceSq ∈ S

T, with respect toS.

All sequences consist of events that correspond to a finite
alphabet,Σ. The length of sequences inS and sequences
in S

T might or might not be equal in length. The training
databaseS is assumed to contain only normal sequences,
and hence the techniques operate in a semi-supervised set-
ting [25]. In Section 8, we discuss how the techniques can
be extended to unsupervised setting, whereS can contain
both normal and anomalous sequences.

3 Anomaly Detection Techniques for Se-
quences

We evaluated a variety of techniques that can be grouped
into following three categories:

3.1 Kernel Based Techniques
Kernel based techniques make use of pairwise similar-

ity between sequences. In the problem formulation stated
in Definition 1 the sequences can be of different lengths,
hence simple measures such asHamming Distancecannot
be used. One possible measure is the normalized length of
longest common subsequencebetween a pair of sequences.
This similarity between two sequencesSi andSj , is com-
puted as:

nLCS(Si, Sj) =
|LCS(Si, Sj)|

√

|Si||Sj |
(1)

Since the value computed above is between 0 and 1,
nLCS(Si, Sj) can be used to represent distance between
Si andSj [25]. Other similarity measures can be used as
well, for e.g., thespectrum kernel[17]. We usenLCS in
our experimental study, since it was used in [4] in detecting
anomalies in sequences and appears promising.

3.1.1 Nearest Neighbors Based (kNN)

In the nearest neighbor scheme (kNN), for each test se-
quenceSq ∈ S

T, the distance to itskth nearest neighbor in
the training setS is computed. This distance becomes the
anomaly scoreA(Sq) [25, 21].

A key parameter in the algorithm isk. In our experi-
ments we observe that the performance of kNN technique
does not change much for1 ≤ k ≤ 8, but the performance
degrades gradually for larger values ofk.

3.1.2 Clustering Based (CLUSTER)

This technique clusters the sequences inS into a fixed
number of clusters,c, using CLARA [13]k-medoids algo-
rithm. The test phase involves measuring the distance of
every test sequence,Sq ∈ S

T, with the medoid of each
cluster. The distance to the medoid of the closest cluster
becomes the anomaly scoreA(Sq).

The number of clusters,c, is a key parameter for this
technique. In our experiments we observed that the perfor-
mance of CLUSTER improved asc was increased from 2
onwards, but stabilized for values greater than 32. Gener-
ally, if the normal data set can be well represented usingc

clusters, CLUSTER will perform well for that value ofc.

3.2 Window Based Technique (t-STIDE)
Window based techniques try to localize the cause of

anomaly in a test sequence, within one or more windows,
where a window is a fixed length subsequence of the test
sequence. One such technique calledThreshold Sequence
Time-Delay Embedding(t-STIDE) [8] uses a sliding win-
dow of fixed sizek to extractk-length windows from the
training sequences inS. The count of each window occur-
ring in S is maintained. During testing,k-length windows
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are extracted from a test sequenceSq. Each such windowωi

is assigned a likelihood scoreP (ωi) = f(ωi)
f(∗) , wheref(ωi)

is the frequency of occurrence of windowωi in S, andf(∗)
is the total number ofk length windows extracted fromS.

For the test sequenceSq, |Sq| − k + 1 windows are ex-
tracted, and a likelihood score vector of length|Sq| − k + 1
is obtained. This score vector can be combined in multiple
ways to obtainA(Sq), as discussed in Section 3.4.

3.3 Markovian Techniques
Such techniques estimate the conditional probability for

each symbol in a test sequenceSq conditioned on the sym-
bols preceding it. Most of the techniques utilize theshort
memoryproperty of sequences [22]. This property is a
higher-order Markov condition which states that for a given
sequenceS = 〈s1, s2, . . . s|S|〉, the conditional probability
of occurrence of a symbolsi is given as:

P (si|s1s2 . . . si−1) ≈ P (si|sksk+1 . . . si−1) (2)

for somek ≥ 1. In the following, we investigate four
Markovian techniques. Each one of them computes a vector
of scores, each element of which corresponds to the con-
ditional probability of observing a symbol, as defined in
Equation 2. This score vector is then combined to obtain
A(Sq) using techniques discussed in Section 3.4.

3.3.1 Finite State Automata Based Techniques (FSA
and FSA-z)

A fixed length Markovian technique (FSA) [19] deter-
mines the probabilityP (sqi) of a symbolsqi, conditioned
on a fixed number of preceding symbols1. The approach
employed by FSA uses aFinite State Automatonto estimate
the conditional probabilities.

FSA extracts (n + 1) sized subsequences from the train-
ing dataS using a sliding window. Each node in the au-
tomaton constructed by FSA corresponds to a unique sub-
sequence ofn symbols that form the firstn symbols of such
n + 1 length subsequences. An edge exists between a pair
of nodes,Ni andNj in the FSA, ifNi corresponds to states
si1si2 . . . sin andNj corresponds to statessi2si3 . . . sinsjn.
At every state of the FSA two quantities are maintained.
One is the number of times then length subsequence corre-
sponding to the state is observed inS. The second quantity
is a vector of frequencies corresponding to number of times
different edges emanating from this state are observed. Us-
ing these two quantities, the conditional probability for a
symbol, given precedingn symbols, can be determined.

During testing, the automaton is used to determine a like-
lihood score for everyn+1 subsequence extracted from test
sequenceSq which is equal to the conditional probability

1A more general formulation that determines probability ofl symbols
conditioned on a fixed number of precedingn symbols is discussed in [19].

associated with the transition from the state corresponding
to first n symbols to the state corresponding to the lastn

symbols. If there is no state in the automaton correspond-
ing to the firstn symbols, the subsequence is ignored.

FSA-z We propose a variant of FSA technique, in which
if there is no state corresponding to the firstn symbols of
a n + l subsequence, we assign a low score (e.g. 0) to that
subsequence, instead of ignoring it. The intuition behind
assigning a low score to non-existent states is that anoma-
lous test sequences are more likely to contain such states,
than normal test sequences. While FSA ignores this infor-
mation, we utilize it in FSA-z.

For both FSA and FSA-z techniques, the value ofn is a
critical parameter. Settingn to be very low (≤ 3) or very
high (≥ 10), results in poor performance. The best results
were obtained forn = 5.

3.3.2 Probabilistic Suffix Trees (PST)

A PST is a tree representation of a variable-order markov
chain [24]. It estimates the probability,P (sqi), of a sym-
bol sqi, in the test sequence,Sq, conditioned on a variable
number of previously observed symbols. (variable markov
models). We evaluate one such technique (PST), proposed
by [24] usingProbabilistic Suffix Trees[22]. In the train-
ing phase, a PST is constructed from the sequences inS.
The depth of a fully constructed PST is equal to the length
of longest sequence inS. For anomaly detection, it has
been shown that the PST can be pruned significantly with-
out affecting their performance. The pruning can be done
by limiting the maximum depth of the tree to a threshold,
L, or by applying thresholds to the empirical probability of
a node label,MinCount, or to the conditional probability
of a symbol emanating from a given node,PMin.

It should be noted that if the thresholdsMinCount and
PMin are not applied, the PST based technique is equiv-
alent to FSA technique withn = L andl = 1. When the
two thresholds are applied, the events are conditioned on
the maximum length suffix, with maximum lengthL, that
exists in the PST.

For testing, the PST assigns a likelihood score to each
eventsqi of the test sequenceSq as equal to the proba-
bility of observing symbolsqi after the longest suffix of
sq1sq2 . . . sqi−1 that occurs in the PST.

3.3.3 Sparse Markovian Technique (RIPPER)

Sparse Markovian techniques are more flexible than vari-
able Markovian techniques, in the sense that they estimate
the conditional probability ofsqi based on a subset of sym-
bols within the precedingk symbols, which are not neces-
sarily contagious or immediately preceding tosqi. In other
words the symbols are conditioned on a sparse history.
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Lee et al [16] use RIPPER classifier to build such sparse
models. In this approach, a sliding window is applied to the
training dataS to obtaink length windows. The firstk − 1
positions of these windows are treated ask − 1 categorical
attributes, and thekth position is treated as a target class.
RIPPER [5] is used to learn rules that can predict thekth

symbol given the firstk − 1 symbols. To ensure that there
is no symbol that occurs very rarely as the target class, the
training sequences are over-sampled.

For testing,k length subsequences are extracted from
each test sequenceSq using a sliding window. For any
subsequence, the firstk − 1 events are classified using the
classifier learnt in the training phase and the prediction is
compared to thekth symbol. RIPPER also assigns a con-
fidence score associated with the classification, denoted as
conf(sqi). Lee et al assign the likelihood score of symbol
sqi is assigned as follows:

• For a correct classification,P (sqi) = 1.

• For a misclassification,P (sqi) = 1
100conf(sqi)

3.3.4 Hidden Markov Models Based Technique
(HMM)

Techniques that apply HMMs for modeling sequences,
transform an input sequence from the symbol space to the
hidden state space. The key assumption for the HMM
based anomaly detection technique [8] is that the normal
sequences can be effectively represented in the hidden state
space, while anomalous sequences cannot be.

The training phase involves learning an HMM withσ
hidden states, from the normal sequences inS using the
Baum Welchalgorithm.In the testing phase, the optimal hid-
den state sequence for the given input test sequenceSq is de-
termined, using theViterbi algorithm.For every pair of con-
secutive states,〈sH

qi , s
Hqi + 1〉, in the optimal hidden state

sequence, the state transition matrix provides a likelihood
score for transitioning fromsH

qi to sH
qi+1. Thus a likelihood

score vector of length|Sq| − 1 is obtained.
The number of hidden statesσ is a critical parameter for

HMM. We experimented with values ranging from 2 to|Σ|.
Our experiments reveal that the performance of HMM does
not vary significantly for different values ofσ. Here the
results are presented forσ = 4.

3.4 Combining Scores
The window based and Markovian techniques discussed

above generate a likelihood score vector for a test sequence,
Sq. A combination function is then applied to obtain a
single anomaly scoreA(Sq). A(Sq) can be computed in
multiple ways, such as average score [15], minimum score,
maximum score, average log score [24], using a threshold
[19, 8]. We experimented with various combination func-
tions for different techniques, and found that theaverage

log scorefunction has the best performance across all data
sets. Hence, results are reported for theaverage log score
function. If likelihood score for any window or symbol is
0, we replace it with10−6 sincelog 0 is undefined. Results
with other combination techniques are available in our tech-
nical report [2].

4 Data Sets Used
In this section we describe various public as well as the

artificially generated data sets that we used to evaluate the
different anomaly detection techniques. To highlight the
strengths and weaknesses of different techniques, we also
generated artificial data sets using HMMs. For every data
set, we first constructed a set of normal sequences, and a set
of anomalous sequences. A sample of the normal sequences
was used as training data for different techniques. A disjoint
sample of normal sequences and a sample of anomalous se-
quences were added together to form the test data. The rel-
ative proportion of normal and anomalous sequences in the
test data determined the “difficulty level” for that data set.
We experimented with different ratios such as 1:1, 10:1 and
20:1 of normal and anomalous sequences and encountered
similar trends. In this paper we report results when normal
and anomalous sequences were in 20:1 ratio in test data.

Results on data sets with other ratios are consistent in rel-
ative terms, although most techniques perform much better
for the simplest data set that uses a ratio 1:1. In reality, the
ratio of normal to anomalous can be even larger than 20:1.
But we were unable to try such skewed distributions due to
limited number of normal samples available in some of the
data sets.

Source Data Set |Σ| l̂ |SN| |SA| |S| |ST|

PFAM

HCV 44 87 2423 50 1423 1050
NAD 42 160 2685 50 1685 1050
TET 42 52 1952 50 952 1050
RUB 42 182 1059 50 559 525
RVP 46 95 1935 50 935 1050

UNM
snd-cert 56 803 1811 172 811 1050
snd-unm 53 839 2030 130 1030 1050

DARPA
bsmweek1 67 149 1000 800 10 210
bsmweek2 73 141 2000 1000 113 1050
bsmweek3 78 143 2000 1000 67 1050

Table 3: Public data sets used for experimental evaluation.
l̂ – Average Length of Sequences,S

N – Normal Data,SA

– Anomaly Data,S – Training Data,ST – Test Data.

Table 3 summarizes the various statistics of the data sets
used in our experiments. All data sets are available from
our web site (Link not provided to maintain double blind
review status). The distribution of the symbols for normal
and anomalous sequences is illustrated in Figures 1(a),1(b)
(RVP), 1(c),1(d) (snd-unm), and 1(e),1(f), (bsm-week2).
The distribution of symbols in snd-unm data is different for

4



D
R

A
FT

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

rvp  Normal

Symbols

(a) RVP Normal

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

rvp  Anomaly

Symbols

(b) RVP Anomalous

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

snd−unm  Normal

Symbols

(c) snd-cert Normal

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

snd−unm  Anomaly

Symbols

(d) snd-cert Anomalous

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

bsm−week2  Normal

Symbols

(e) bsm-w2 Normal

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

bsm−week2  Anomaly

Symbols

(f) bsm-w2 Anomalous

Figure 1: Distribution of Symbols in Training Data Sets of Different Types.

normal and anomaly data, while the difference is not signif-
icant in RVP and bsm-week2 data. We will explain how the
normal and anomalous sequences were obtained for each
type of data set in the next subsections.

4.1 Protein Data Sets
The first set of public data sets were obtained from

PFAM database (Release 17.0) [3] containing sequences
belonging to 7868 protein families. Sequences belonging
to one family are structurally different from sequences be-
longing to another family. We choose five families, viz.,
HCV, NAD, TET, RVP, RUB. For each family we construct
a normal data set by choosing a sample from the set of se-
quences belonging to that family. We then sample 50 se-
quences from other four families to construct an anomaly
data set. Similar data was used by [24] to evaluate the PST
technique. The difference was that the authors constructeda
test data for each pair of protein families such that samples
from one family were used as normal and samples from the
other were used as test. The PST results on PFAM data sets
reported in this paper appear to be worse than those reported
in [24].

4.2 Intrusion Detection Data Sets
The second set of public data sets were collected from

two repositories of benchmark data generated for evalua-
tion of intrusion detection algorithms. One repository was
generated at University of New Mexico2. The normal se-
quences consisted of sequence of system calls generated in
an operating system during the normal operation of a com-
puter program, such as sendmail, ftp, lpr etc. The anoma-
lous sequences consisted of sequence of system calls gener-
ated when the program is run in an abnormal mode, corre-
sponding to the operation of a hacked computer. We report
results on two data sets, viz,snd-unmandsnd-cert.

The other intrusion detection data repository was theBa-
sic Security Module(BSM) audit data, collected from a vic-
tim Solaris machine, in the DARPA Lincoln Labs 1998 net-
work simulation data sets [18]. The repository contains la-
beled training and testing DARPA data for multiple weeks
collected on a single machine. For each week we con-
structed the normal data set using the sequences labeled as

2http://www.cs.unm.edu/∼immsec/systemcalls.htm

normal from all days of the week. The anomaly data set
was constructed in a similar fashion. The data is similar to
the system call data described above with similar (though
larger) alphabet.

The protein data sets and intrusion detection data sets
are quite distinct in terms of the nature of anomalies. The
anomalous sequences in a protein data set belong to a dif-
ferent family than the normal sequences, and hence can be
thought of as being generated by a very different genera-
tive mechanism. This is also supported by the difference in
the distributions of symbols for normal and anomalous se-
quences for RVP data as shown in Figures 1(a) and 1(b).
The anomalous sequences in the intrusion detection data
sets correspond to scenario when the normal operation of
a system is disrupted for a short span. Thus the anomalous
sequences are expected to appear like normal sequences for
most of the span of the sequence, but deviate in very few
locations of the sequence. Figures 1(e) and 1(f) shows how
the distributions of symbols for normal and anomalous se-
quences in bsm-week2 data set, are almost identical. One
would expect the UNM data sets (snd-unm and snd-cert) to
have similar pattern as for the DARPA data. But as shown
in Figures 1(c) and 1(d), the distributions are more similar
to the protein data sets.

4.3 Artificial Data Sets
As mentioned in the previous section, the public data

sets reveal two types of anomalous sequences, one which
are arguably generated from a different generative mecha-
nism than the normal sequences, and the other which result
from a normal sequence deviating for a short span from its
expected normal behavior. Our hypothesis is that different
techniques might be suited to detect anomalies of one type
or another, or both. To confirm our hypothesis we gener-
ate artificial sequences from an HMM based data genera-
tor. This data generator allows us to generate normal and
anomalous sequences with desired characteristics.

We used a generic HMM, as shown in Figure 2 to model
normal as well as anomalous data. The HMM shown
in Figure 2 has two sets of states,{S1, S2, . . . S6} and
{S7, S8, . . . S12}.

Within each set, the transitions corresponding to the
solid arrows shown in Figure 2 were assigned a transition
probability of (1−5β), while other transitions were assigned
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Figure 2: HMM used to generate artificial data.

transition probabilityβ. No transition is possible between
states belonging to different sets. The only exception are
S2S8 for which the transition probability isλ, andS7S1

for which the transition probability is1 − λ. The transi-
tion probabilitiesS2S3 andS7S8 are adjusted accordingly
so that the sum of transition probabilities for each state is1.

The observation alphabet is of size 6. Each state emits
one alphabet with a high probability (1− 5α), and all other
alphabets with a low probability (α). Figure 2 depicts the
most likely alphabet for each state.

The initial probability vectorπ of the HMM is con-
structed such that eitherπ1 = π2 = . . . = π6 = 1 and
π7 = π8 = . . . = π12 = 0; or vice-versa.

Normal sequences are generated by settingλ to a low
value andπ to be such that the first 6 states have initial prob-
ability set to 1

6 and rest 0. Ifλ = β = α = 0, the normal
sequences will consist of the subsequencea1a2a3a4a5a6

getting repeated multiple times. By increasingλ or β or α,
anomalies can be induced in the normal sequences.

This generic HMM can be tuned to generate two type of
anomalous sequences. For the first type of anomalous se-
quences,λ is set to a high value andπ to be such that the last
6 states have initial probability set to16 and rest 0. The re-
sulting HMM is directly opposite to the HMM constructed
for generating normal sequences. Hence the anomalous se-
quences generated by this HMM are completely different
from the normal sequences.

To generate second type of anomalous sequences, the
HMM used to generate the normal sequence is used, with
the only difference thatλ is increased to a higher value than
0. Thus the anomalous sequences generated by this HMM
will be similar to the normal sequences except that there
will be short spans when the symbols are generated by the
second set of states.

By varyingλ, β, andα, we generated several evaluation
data sets (with two different types of anomalous sequences).
We will present the results of our experiments on these arti-
ficial data sets in Section 7.

5 Evaluation Methodology
The techniques investigated in this paper assign an

anomaly score to each test sequenceSq ∈ S
T. To com-

pare the performance of different techniques we adopt the
following evaluation strategy:

1. Rank the test sequences in decreasing order based on
the anomaly scores.

2. Count the number of true anomalies in the topp por-
tion of the sorted test sequences, wherep = δq,
0 ≤ δ ≤ 1, andq is the number of true anomalies
in S

T. Let there bet true anomalous sequences in top
p ranked sequences.

3. Accuracy of the technique =t
q

= t
δp

.

We experimented with different values ofδ and reported
consistent findings. We present results forδ = 1.0 in this
paper.

Though computational complexity is an important metric
when evaluating anomaly detection techniques in real ap-
plication domains, we do not present a detailed comparison
of computational complexity of different techniques due to
space limitations. Briefly, since kernel based techniques
involve computation of pairwise similarity, their compu-
tational complexity can be very high. The computation
of similarity measure itself is a complex operation which
can become a computational bottleneck for such techniques.
Learning the model in HMM as well as RIPPER technique
is expensive, though not as much as the computation of
pairwise similarity for kernel based techniques. The PST
technique is the most economical in terms of computational
cost due to the pruning involved. t-STIDE, FSA, and FSA-z
are relatively more expensive than PST though not very sig-
nificantly. More detailed comparisons are provided in our
technical report [2].

6 Nature of Normal and Anomalous Se-
quences

To understand the performance of different anomaly de-
tection techniques on a given test data set, we first need to
understand what differentiates normal and anomalous se-
quences in the test data set.

One distinction between normal and anomalous se-
quences is that normal test sequences are expected to be
more similar (using a certain similarity measure) to train-
ing sequences, than anomalous test sequences. If the differ-
ence in similarity is not large, this characteristic will not be
able to accurately distinguish between normal and anoma-
lous sequences.

Another characteristic of a test sequence is the relative
frequency of short patterns (subsequences) in the test se-
quence with respect to the training sequences. Let us clas-
sify a short pattern occurring in a test sequence asseenif
it occurs in training sequences andunseenif it does not oc-
cur in training sequences. Theseenpatterns can be further
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Kernel Markovian
cls knn tstd fsa fsaz pst rip hmm Avg

PFAM

hcv 0.54 0.88 0.90 0.88 0.92 0.74 0.52 0.10 0.69
nad 0.46 0.64 0.74 0.66 0.72 0.10 0.20 0.06 0.45
tet 0.84 0.86 0.50 0.48 0.50 0.66 0.36 0.20 0.55
rvp 0.86 0.90 0.90 0.90 0.90 0.50 0.66 0.10 0.72
rub 0.76 0.72 0.88 0.80 0.88 0.28 0.72 0.00 0.63

UNM
sndu 0.76 0.84 0.58 0.82 0.80 0.28 0.72 0.00 0.60
sndc 0.94 0.94 0.64 0.88 0.88 0.10 0.70 0.00 0.64

DRPA

bw1 0.20 0.20 0.20 0.40 0.50 0.00 0.20 0.00 0.21
bw2 0.36 0.52 0.36 0.52 0.56 0.10 0.18 0.02 0.33
bw3 0.52 0.48 0.60 0.64 0.66 0.34 0.50 0.20 0.49

Avg 0.62 0.70 0.63 0.70 0.73 0.31 0.48 0.07

Table 4: Results for public data sets.

classified asseen-frequent, if they occur frequently in the
training sequences, andseen-rare, if they occur rarely in
the training sequences. A given test sequence can contain
all three type of patterns, in varying proportions. The per-
formance of a window based or a Markovian technique will
depend on following factors:

1. What is the proportion ofseen-frequent, seen-rare, and
unseenpatterns for normal sequences, and for anoma-
lous sequences?

2. What is the relative score assigned by the technique to
the three type of patterns?

We will refer back to this characteristic when analyzing the
performance of different techniques in Section 7.4.

7 Experimental Results
The experiments were conducted on a variety of data sets

discussed in Section 4. The various parameter settings asso-
ciated with each technique were explored. The results pre-
sented here are for the parameter setting which gave best re-
sults across all data sets, for each technique. The parameter
settings for the reported results are : CLUSTER (c = 32),
kNN (k = 4), FSA,FSA-z (n = 5, l = 1), tSTIDE (k = 6),
PST (L = 6, Pmin = 0.01), RIPPER (k = 6). For public
data sets, HMM was run withσ = 4, while for artificial
data sets, HMM was run withσ = 12. For window based
and Markovian techniques, the techniques were evaluated
using different combination methods discussed in Section
3.4.The results reported here are for theaverage log score
combination function.

7.1 Results on Public Data Sets

Table 4 summarizes the results on 10 public data sets.
Overall one can observe that the performance of techniques
in general is better for PFAM data sets and on UNM data
sets, while the DARPA data sets are more challenging.
Though the UNM and DARPA data sets are both intrusion
detection data sets, and hence are expected to be similar
in nature, the results in Table 4 show that the performance

on UNM data sets is similar to PFAM data sets. A rea-
son for this could be that the nature of anomalies in UNM
data sets are more similar to the anomalies in PFAM data
sets. The similarity in the distribution of symbols for nor-
mal and anomalous sequences for PFAM and UNM data
sets (See Figure 1), supports this hypothesis. CLUSTER
and kNN show good performance for PFAM and UNM data
sets but perform poorly on DARPA data sets. FSA and
FSA-z show consistently good performance for all public
data sets. t-STIDE performs well for PFAM data sets but
its performance degrades for both UNM and DARPA data
sets. While PST performs average to poor for all data sets,
RIPPER performs well for UNM data sets.

7.2 Results on Artificial Data Sets
Table 5 summarizes the results on 6 artificial data sets.

The normal sequences in data setd1 were generated with
λ = 0.01, β = 0.01, α = 0.01. The anomalous sequences
were generated using the first setting as discussed in Sec-
tion 4.3, such that the sequences were primarily generated
from the second set of states. For data setsd2–d6, the
HMM used to generate normal sequences was tuned with
β = 0.01, α = 0.01. The value ofλ was increased from
0.002 to 0.01 in increments of0.002. Thus normal se-
quences ind2 contain least number of anomalous patterns
while those ind6 contain the largest number of anomalous
patterns. The anomalous sequences were generated using
the second setting in whichλ is set to 0.1. One can ob-
serve in Table 5 that the data sets become progressively
challenging fromd2 to d6, as the performance of most of
the techniques deteriorates asλ increases. The anomalous
sequences are very different than normal ford1, since they
are generated by a completely opposite generative mecha-
nism, and hence all techniques are able to detect exactly all
anomalous sequences.

From Table 5, we observe that PST is the most stable
technique across the artificial data sets, while the deteriora-
tion is most pronounced for FSA and FSA-z. Both kNN and
CLUSTER also get negatively impacted as theλ increases
but the trend is gradual than for FSA-z.

Kernel Markovian
cls knn tstd fsa fsaz pst rip hmm Avg

d1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
d2 0.80 0.88 0.82 0.88 0.92 0.84 0.78 0.50 0.80
d3 0.74 0.76 0.64 0.50 0.60 0.82 0.64 0.34 0.63
d4 0.74 0.76 0.64 0.52 0.52 0.76 0.66 0.42 0.63
d5 0.58 0.60 0.48 0.24 0.32 0.68 0.52 0.16 0.45
d6 0.64 0.68 0.50 0.28 0.38 0.68 0.44 0.66 0.53
Avg 0.75 0.78 0.68 0.57 0.62 0.80 0.67 0.51

Table 5: Results for artificial data sets.

7.3 Results on Altered RVP Data Set
Third set of experiments was conducted on the RVP data

set from PFAM repository. A test data set was constructed
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Figure 3: Results for altered RVP data sets

by sampling 800 most normal sequences not present in
training data. Anomalies were injected in 50 of the test se-
quences by randomly replacingk symbols in each sequence
with the least frequent symbol in the data set. The objec-
tive of this experiment was to construct a data set in which
the anomalous sequences are minor deviations from normal
sequences, as observed in real settings such as intrusion de-
tection. We tested data sets with different values ofk using
CLUSTER, t-STIDE, FSA, FSA-z, PST, and RIPPER. Fig-
ure 3 shows the performance of the different techniques for
different values ofk from 1 to 10. We observe that FSA-z
performs remarkably well for these values ofk. CLUS-
TER, t-STIDE, FSA, PST, and RIPPER exhibit moderate
performance, though for values ofk closer to 10, RIPPER
performs better than the other 4 techniques. Fork > 10,
all techniques show better than 90% accuracy because the
anomalous sequences become very distinct from the nor-
mal sequences, and hence all techniques perform compara-
bly well. Note that the average length of sequences for RVP
data set is close to 90.

7.4 Observations for Individual Techniques
kNN The kNN technique performs better than CLUS-
TER for most of the data sets. This is expected, since
CLUSTER is optimized for clustering and not for anomaly
detection. The kNN based technique is not very sensitive to
the parameterk for lower values ofk, 1 ≤ k ≤ 4, but the
performance deteriorates fork larger than 4.

CLUSTER Performance of CLUSTER technique de-
pends on the similarity measure. The similarity measure
should be such that it assigns higher similarity between
a pair of normal sequences, and lower similarity between
a normal and anomalous sequence. If the anomalous se-
quence is very different from the normal sequence,nLCS

will assign a low similarity to that pair. But if the anoma-

lous sequence is different from the normal sequence for a
short span only, thenLCS measure does not effectively
capture this difference. In Table 4, CLUSTER performs
well for protein data sets, as well as on UNM data sets,
since the anomalous sequences are very different from the
normal sequences. But the performance becomes worse for
the DARPA data sets, such as bw1, where the anomalous
sequences are minor deviations of the normal sequences.
Results on artificial data sets (Table 5 and Figure 3) also in-
dicate similar results.

FSA and FSA-z The original FSA technique does not
assign any score when a unreachable state is encountered
in the test sequence, while our FSA-z technique assigns a
score of 0 in such cases. This generally improves the per-
formance of FSA-z. The reason for this improvement is that
often, mostly in anomalous sequences, there existunseen
patterns (Refer to our discussion in Section 6). While FSA
ignores such patterns, FSA-z assigns a score of 0. Such pat-
terns can provide useful information in differentiating be-
tween normal and anomalous sequences, and hence FSA-z
performs better than FSA. In fact, FSA-z performs well if
the anomalous test sequences contain relatively higher num-
ber ofunseenpatterns when compared to anomalous normal
sequences. This behavior is evident in Figure 3, where in-
sertion of even a few unseen symbols in the anomalous se-
quences results in multipleunseenpatterns, and are easily
detected by FSA-z, while FSA does not perform as well.

A drawback of FSA and FSA-z techniques is that they
tend to assign high likelihood scores toseen-rarepatterns.
For example, let us assume that the subsequence AAAAAB
occurs just once in training data,S. A 5+1 FSA will learn
this pattern and assign a probability of 1 if symbol B fol-
lows the subsequence AAAAA in a test sequence. Thus
if the anomalous test sequences are such that they contain
manyseen-rarepatterns, such anomalous sequences will be
assigned a low anomaly score. The performance of FSA and
FSA-z on artificial data set in Table 5 illustrates this point.
For data setsd2–d6, the only difference between normal
and anomalous sequences is that anomalous sequences con-
tain higher number ofseen-rarepatterns when compared
to normal sequences. But since FSA and FSA-z assign a
high likelihood scores to such patterns, they fail to detect
the anomalous sequences. This is the reason why perfor-
mance of FSA as well as FSA-z deteriorates sharply from
d2 to d6.

t-STIDE The t-STIDE technique has the best perfor-
mance for most of the PFAM data sets but is relatively
worse for the intrusion detection data sets. A strength of t-
STIDE is that unlike FSA and FSA-z, t-STIDE does not get
affected by the presence ofseen-rarewindows in anoma-
lous test sequences. This can be observed in the artificial
data sets, where the performance of t-STIDE does not dete-
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riorate as sharply as for FSA-z asλ is increased (fromd2 –
d6).

The above mentioned strength of t-STIDE can also have
a negative impact on its performance. t-STIDE learns only
frequently occurring patterns in the training data, and ig-
nores rarely occurring ones. Thus if a normal sequence is
tested against t-STIDE, and it contains aseen-rarepattern,
it will be assigned a low likelihood score by t-STIDE, while
FSA and FSA-z will assign a higher score in such a sce-
nario.

In the previous evaluation of t-STIDE [8] with other
techniques, t-STIDE was shown to be comparable with RIP-
PER on UNM data sets. Our results are consistent with their
evaluation. But on PFAM data sets we observe that t-STIDE
performs better than RIPPER.

In the original t-STIDE technique [8] the authors use a
threshold based combination function, in which the number
of windows in the test sequence whose scores are equal to
or below a threshold, are counted. Our experiments show
that using the average log values of the scores performs
equally well without relying on the choice of a threshold.
The STIDE technique [12] is a simpler variant of t-STIDE
in which the threshold is set to 0. In [8] the authors have
shown that t-STIDE is better than STIDE, hence we evalu-
ate the technique used in t-STIDE.

PST We observe that PST performs very poorly on most
of the public data sets. It should be noted that in the paper
that used PST for anomaly detection, the evaluation done
on protein data sets was different than our evaluation. We
provide a more unbiased evaluation which reveals that PST
does not perform that well on similar protein data sets.

PST assigns moderately high likelihood scores toseen-
rare patterns observed in a test sequence, since it computes
the probability of the last event in the pattern conditioned
on a suffix of the preceding symbols in the pattern. Thus
the score assigned toseen-rarepatterns by PST are lower
than the score assigned by FSA-z, but higher than the score
assigned by t-STIDE. Similarly, PST assigns a moderately
high score forunseenpatterns occurring in test sequences.
The latter characteristic of PST can become the weakness
of PST in a way that the anomaly signal due to theunseen
as well asseen-rarepatterns issmoothedby the PST. If in a
data set the normal sequences contain a significant number
of seen-rarepatterns, and the anomalous sequences contain
unseenpatterns, they might still not be distinguishable. This
behavior is observed for many public data sets in Table 4,
as well as on the modified RVP data set in Figure 3.

The fact that the scores assigned toseen-rarepatterns by
PST are lower than the score assigned by FSA-z, can also
become strength of PST because it does not get affected by
the presence ofseen-rarepatterns in normal test sequences,
unlike FSA-z. This characteristic is observed with the arti-
ficial data sets in Table 5. Asλ increases, the performance

of PST remains more stable than any other technique.

RIPPER Both RIPPER and PST techniques are more
flexible than FSA-z in conditioning the probability of an
event based on its preceding symbols. This suggests that
RIPPER technique alsosmoothensthe likelihood scores
of unseenas well asseen-rarepatterns in test sequences.
Therefore, we observe that for public data sets, RIPPER ex-
hibits relatively poor performance, in comparison to FSA
and FSA-z. RIPPER performs better than PST on 8 out of
10 data sets. Thus choosing a sparse history is more ef-
fective than choosing a variable length suffix. The reason
for this is that the smoothing done by RIPPER is less than
smoothing done by PST (since the RIPPER classifier ap-
plies more specific and longer rules first, and is hence bi-
ased towards using more symbols of the history), and hence
RIPPER is more similar to FSA and FSA-z than PST. The
results on artificial data sets in Table 5 also show that the
deterioration of RIPPER’s performance fromd1 – d6 is less
pronounced than for FSA-z while more pronounced than
PST.

HMM The HMM technique performs very poorly on all
public data sets. The reasons for the poor performance of
HMM are twofold. The first reason is that HMM tech-
nique makes an assumption that the normal sequences can
be represented withσ hidden states. Often, this assumption
does not hold true, and hence the HMM model learnt from
the training sequences cannot emit the normal sequences
with high confidence. Thus all test sequences (normal and
anomalous) are assigned a low probability score. The sec-
ond reason for the poor performance is the manner in which
a score is assigned to a test sequence. The test sequence is
first converted to a hidden state sequence, and then a1 + 1
FSA is applied to the transformed sequence. We have ob-
served from our experiment using FSA that a1 + 1 FSA
does not perform well for anomaly detection. The perfor-
mance of HMM on artificial data sets (Table 5 illustrates
this argument. Since the training data was actually gen-
erated by a 12 state HMM and the HMM technique was
trained withσ = 12; thus the HMM model effectively cap-
tures the normal sequences. The results of HMM for artifi-
cial data sets are therefore better than for public data sets,
but still slightly worse than other techniques because of the
poor performance of the1 + 1 FSA.

8 Conclusions and Future Work
Our experimental evaluation provided us with valuable

insights into strengths and weaknesses of different anomaly
detection techniques. None of the techniques was found to
be consistently superior to all other techniques, indicating
that the performance of a technique depends on the nature
of the sequence data set. The use of artificial data generator
allowed us to arrive at conclusions that were not evident
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from the results on public data sets.
A significant result of this study is that several tech-

niques have been shown to be quite effective in applica-
tion domains for which they were not originally intended
for. Techniques such as t-STIDE and FSA ,which were
originally evaluated on system call intrusion detection data,
show promising results on protein data sets. Interestingly,
t-STIDE performs relatively poorly on system call intrusion
detection data sets.

Results on the public data sets (Table 4) reveal that FSA-
z and FSA, are the most consistent techniques while PST
and RIPPER generally perform poorly. But the results on
artificial data sets (Table 5) identify scenarios where the lat-
ter two techniques might be better suited than the former
two.

Kernel based techniques are found to perform well for
data sets in which the anomalous sequences are relatively
different from the normal sequences; but perform poorly
when the different between the two is small. This is due to
the nature of the normalized LCS similarity measure used
in the kernel based techniques. Future work should inves-
tigate other similarity measures that are able to capture the
difference between sequences that are minor deviations of
each other. Our experiments show that kNN technique is
somewhat better suited than CLUSTER for anomaly detec-
tion.

Consistent with the observations of other researchers [8],
we found the HMM technique to perform poorly. When
the normal sequences were generated using an HMM, the
performance improves significantly. The hidden state se-
quences, obtained as a intermediate transformation of data,
can actually be used as input data to any other technique
discussed here. The performance of such an approach will
be investigated as a future direction of research.
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